IU GI Motility Conference August 5, 2015

Sphincter of Oddi Dysfunction: Where do we stand in 2015?

Evan L. Fogel, M.D. Professor of Medicine ERCP Fellowship Director Division of Gastroenterology/Hepatology Indiana University Hospital Indianapolis, Indiana

OUTLINE

- sphincter of Oddi dysfunction: definition
- case presentation
- manometry
- outcomes

Sphincter of Oddi

regulates flow of bile/pancreas enzymes into duodenum
maintains sterile intraductal milieu

Major Papilla

Sphincter of Oddi Dysfunction (SOD)

- an abnormality of SO *contractility*
- it is a benign, noncalculous, relative obstruction to flow of bile or pancreatic juice through the pancreatobiliary junction
- most common in young women
- may be manifested clinically by "pancreaticobiliary" pain, pancreatitis, abnormal LFTs, or abnormal pancreatic enzymes

Case: 30-year-old woman with RUQ pain

six-month history

- constant discomfort, rated 2/10, with intermittent attacks of debilitating pain, identical to pain prior to cholecystectomy last year ("wasn't functioning")
- pain lasts 30-90 minutes, radiates to upper back, associated with nausea/vomiting

Past medical history: cholecystectomy, otherwise negative

• Physical exam: upper abdominal tenderness, otherwise unremarkable

• ER visit: AST 82 (normal < 45), ALT 90 (<40), alkaline phosphatase 150 (<125), bilirubin 0.6 (<1.0), amylase 100 (< 89), lipase 60 (< 51)

• all return to normal when pain-free

• CT scan unremarkable

normal pancreas and biliary tree

referred to a local gastroenterologist

EGD normal

what is your next step in the diagnostic evaluation of this patient?

- post-cholecystectomy pain resembling the patient's pre-operative biliary colic occurs in at least 10-20% of patients
- Here, the pain is similar to gallbladder-type pain, with mildly elevated LFTs, amylase/lipase
 - suggestive of pancreaticobiliary origin

Chronic abdominal pain of pancreaticobiliary origin

• Consider:

 structural causes of biliary and pancreatic ductal obstruction (stones, tumors, strictures)

-chronic pancreatitis (scarring/fibrosis)

-sphincter of Oddi dysfunction (SOD)

Initial evaluation

- History, physical examination
- Labs: LFTs, amylase and/or lipase (during an attack of pain)
- Imaging: ultrasound and/or CT scan

• Consider MRI/MRCP or endoscopic ultrasound (EUS) if available

 may detect pathology (stones, sludge, chronic pancreatitis, tumors) not visualized by other modalities

MRCP

Proceed with ERCP!

Chronic Pancreaticobiliary Pain

What do I do when the MRCP and EUS are normal?

Chronic pancreaticobiliary pain: normal MRCP

 The residual group of patients may have SOD as a cause of their abdominal pain syndrome

SOD Evaluation:

Non-Invasive vs Invasive

Non-invasive Evaluation

- cholescintigraphy (nuclear med scan)
- secretin-MRCP, secretin-EUS

- Not sensitive
 - miss too many cases of SOD
- Not specific
 - suggest SOD when it isn't there!

Diagnostic Evaluation

Invasive tests -ERCP - provides structural evaluation of the pancreatic duct and bile duct -Sphincter of Oddi manometry directly assesses pressure profile of the sphincter of Oddi

Indications for SOM 2013

 Unexplained, *disabling* pancreaticobiliary pain ± LFT and/or pancreatic enzyme abnormalities

Idiopathic pancreatitis

IU Sphincter of Oddi Manometry (SOM): 1994-2007

SOD: Classification

	Туре	Biliary/Pancreatic		
		pain	abnormal labs	duct dilation
Objective evidence	I	+	+	+
Some objective	II	+	+ -	- +
No objective ->	III	+	-	-

OK, we're going to proceed with ERCP / SOM!

How do we do it?

SOM Procedure Overview

- requires special equipment
- requires a cooperative, motionless patient
- a physician-driven procedure (failed cannulation \rightarrow failed SOM)
- requires a knowledgeable, skilled endoscopist and an experienced manometrist to perform a successful study
- requires constant communication and teamwork
- computer and software program for SOM to view waveform

EQUIPMENT

• Water-perfused probe ("Lehman catheter")

Perfusion Perfusion Perfusion

SOM Procedure

- the manometry catheter is advanced through the scope to the duodenum -- the duodenal baseline pressure is set to zero
- the pancreatic/bile duct is cannulated
- the catheter is withdrawn one band at a time
 - when a high-pressure zone is found, the pressure is recorded for 30 seconds
 - basal pressure must be elevated in both recording leads for a diagnosis of SOD

Manometry Tracing

Aim of Therapy for SOD: Reduce Resistance to Flow of Bile or Pancreatic Juice

Medical

Surgical

Endoscopic

Aim of Therapy for SOD: Reduce Resistance to Flow of Bile or Pancreatic Juice

Medical

 antispasmodics (smooth muscle relaxants, calcium channel blockers)

- PPIs, tricyclic anti-depressants

Aim of Therapy for SOD: Reduce Resistance to Flow of Bile or Pancreatic Juice

- Medical
- Surgical
- Endoscopic
 - -Sphincterotomy (cutting the muscle)
 - -Botulinum toxin injection
 - -Dilation
 - -Stent

What is the long-term outcome after biliary sphincterotomy (BES) in SOD?

Long-term Outcome after BES: Type I SOD

Author/year	n	n Improved (%)	Mean follow-up (months)
Rosenblatt/2001	11	9 (82)	57.6
Cicala/2002	6	6 (100)	12
Thatcher/1987	15	15 (100)	28
Boender/1992	24	18 (77)	12.5
Sherman/1991	11	9 (82)	24
TOTAL	67	57 (85)	25.2

Long-term Outcome after BES: Type II SOD

Author/year	n	n Improved (%)	Mean follow-up (months)
Rosenblatt, 2001	30	22 (73)	57.6
Pereira, 2006	16	14 (88)	35.1
Cicala, 2002	8	7 (88)	13
*Toouli, 2000	13	11 (85)	24
Thatcher, 1987	15	7 (47)	20
*Geenen, 1989	18	17 (94)	48
*Sherman, 1994	6	5 (83)	39.6
Botoman, 1994	35	21 (60)	36
Wehrmann, 1996	22	13 (59)	30
Linder, 2003	5	2 (40)	18.1
Bozkurt, 1996	22	14 (64)	32.5
TOTAL	190	133 (70)	36.8

*Randomized controlled trial

Long-term Outcome after BES: Type III SOD

n	n Improved (%)	Mean follow-up (months)
32	9 (28)	57.6
11	2 (18)	30.2
22	11 (50)	15
13	8 (62)	40
38	21 (55)	36
29	2 (8)	30
15	6 (40)	18
9	3 (33)	36.4
169	62 (37)	34.7
	32 11 22 13 38 29 15 9	329 (28)112 (18)2211 (50)138 (62)3821 (55)292 (8)156 (40)93 (33)

*RCT
Causes for Persistent Symptoms after Biliary Sphincterotomy in SOD

- Residual or recurrent biliary SOD
- Pancreatic SOD
- Chronic pancreatitis

- Other untreated pancreaticobiliary disease
- Non-pancreaticobiliary diseases especially gut motility disorders

Long-term Outcome after Biliary Sphincterotomy alone depends on Pancreatic SO Pressure

Eversman et al., *GIE* 1999;49:AB78

Does the addition of a pancreatic sphincterotomy to biliary sphincterotomy in SOD patients improve outcome?

Symptomatic Improvement in Pancreatic SOD Patients after Pancreatic Sphincterotomy

Author/year	n	n Improved (%)	Mean follow-up (months)
Pereira, 2006	13	7 (54)	30.2
Okolo, 2000	15	11 (73)	16
Elton,1998	43	31 (72)	36.4
Soffer, 1994	25	16 (64)	13.7
Guelrud, 1995	27	22 (81)	14.7
TOTAL	123	87 (71)	23.9

Role for ERCP and SOM? 2013

SOD Type	ERCP	SOM
	Yes	Not necessary
II	Yes	Highly recommended
III	Yes	Mandatory

- Approximately 60-80% achieve benefit from sphincterotomy
- Mostly small, retrospective studies
- Little prospective data in Type III patients
- High complications rates (10-20% PEP)

NIH State of the Science Conference: ERCP

- diagnosis and management of Type III SOD patients are most difficult
- invasive procedures should be delayed or avoided if possible the risk of complications exceeds potential benefit in many cases
- ERCP with SOM and sphincterotomy should ideally be performed at specific referral centers and in randomized controlled trials.....

Cohen GIE 2002

Evaluating Predictors & Interventions in Sphincter of Oddi Dysfunction: The EPISOD Trial

Evaluating Predictors & Interventions in Sphincter of Oddi Dysfunction

"EPISOD"

Medical University of South Carolina Indiana University Virginia Mason University of Minnesota Dallas Yale University St. Louis

Study Design

- a multi-center, randomized, sham-controlled study

 designed to assess the value of sphincterotomy as treatment in SOD III

- likelihood of finding SOD (by SOM) in these patients approaches 66% -- need 2:1 randomization in favor of treatment

- assuming a 30% placebo (sham) response rate, and 60% treatment response rate, 214 subjects required

RAPID Score

(Recurrent Abdominal Pain Intensity and Disability)

- modeled after migraine research
- captures, in past 3 months, days lost due to abdominal pain in 3 domains:
 - work
 - household activities
 - social/leisure activities

Durkalski, et al, WJG 2010

RAPID score

- Grade 1: 0-5 days missed (little or no disability)
- Grade 2: 6-10 days (mild disability)
- Grade 3: 11-20 days (moderate disability)
- Grade 4: >21 days (severe disability)

 Minimum score for eligibility: 11 days missed

Primary outcome

 sphincterotomy will result in a higher success rate than the sham intervention

• Success (definition):

- Grade 1 disability as measured using the RAPID scale at months 9 and 12 post-randomization
- no referral for possible re-intervention during the follow up period
- no prescription analgesic use during months 10, 11 and 12 unless prescribed for pain other than abdominal pain (and then no more than 14 days)

Secondary Outcomes

- Is there an association between manometry result and treatment outcome?
- does addition of a pancreatic sphincterotomy improve outcome in patients with pancreatic sphincter hypertension (PSH)?

Primary outcome

Treatment	Number	Success
Sphincterotomy	141	31 (22.0%)
Sham	73	26 (35.6%)

p-value 0.03

Secondary outcome

Treatment	Number	Success
Biliary Sphincterotomy	94	18 (19.1%)
Pancreatic and Biliary (Dual) Sphincterotomy	47	13 (27.7%)
Sham	73	26 (35.6%)

Median change in RAPID (days): Biliary=33 Dual=53 Sham=38

Success criteria too strict? Reducing the pain burden by half

Treatment	Number	Success
Biliary sphincterotomy	94	30 (32%)
Dual sphincterotomy	47	21 (45%)
Sham	73	32 (44%)

Manometry data

- Panc and Bil both abnormal
- P abnormal, B normal
- P abnormal, B not measured

65% Panc abnormal

- B abnormal, P normal
- Both normal

11% 24%

Does manometry predict success?

Mano	metry	Number	Success		
Pancreas	Biliary		Biliary sph	Dual sph	Sham
+	any	77	J/50 16°)	11/44 (25%)	12/43 (28%)
any	+	98	7/39(18%)	7/29(24%)	7/30(23%)
-	- or ?	52	5/30 (17%)	1/1	12/21 (57%)

Potential criticisms

- Wrong subjects?
- Wrong definition of success?
 - too strict
 - wrong pain assessment tool (RAPID)
- Inadequate sphincterotomies?

Too strict?

Rates higher, but patterns the same with

- 50% reduction in RAPID
- 25% reduction in RAPID
- excluding the narcotics reason
- using re-intervention only

Wrong pain tool?

- RAPID measured pain-related disability
- Same results using SF 36 pain scores

SF 36 pain assessment

Treatment	Disability	Baseline	11-12 Months
Biliary	Pain; Moderate, severe, very severe	88%	44%
	Work interference; extreme, quite a bit	51%	16%
Dual	Pain; Moderate, severe, very severe	89%	36%
	Work interference; extreme, quite a bit	38%	6%
Sham	Pain; Moderate, severe, very severe	91%	32%
	Work interference; extreme, quite a bit	31%	10%

Conclusions

- sphincterotomy is not better than a sham procedure in Type III SOD, and manometry is NOT helpful in predicting treatment response
- these results should eliminate the use of ERCP in these patients, and thereby prevent many attacks of pancreatitis

Conclusions

- Further studies of the source of pain are needed in SOD III, with careful evaluation of other treatment options
 - behavioral and neuromodulator therapies
- Should we discard the term "SOD type III", to divert attention away from the sphincter?

JAMA 2014;311:2101-9

Questions

- Are the results all due to placebo?
- Was our sham arm (ERCP/manometry/stent) actually therapeutic?
 - Would a no-touch blinded endoscopy have the same effect?
- Why did sphincterotomy patients do less well?
- How will GI docs and SOD patients respond?
 - Half the patients did get half better
 - Will patients keep coming?
 - Would the patients do it again? Re-do Type IIIs?

IU Experience

- IU contributed 32/214 patients to EPISOD
- 315 Type III SOD patients underwent ERCP at IU during the EPISOD era
 - what happened to these non-randomized patients?
- Charts reviewed, patients contacted by telephone
- 104 patients excluded (eg. normal SOM, ...)
- 96 patients could not be reached, leaving 115 available for analysis (100 at time of DDW)

IU Experience: Results

		n=100
Gender		
	Male	10
	Female	90
Age		
	18-35	32
	36-55	54
	>55	14
	Pain Duration (months) (Range: 1-144)	12
Patients with Daily Pain		60
Abnorma	Abnormal Manometry	
	Pancreas	74
	Biliary	45
	Both	20
	Pressures measured at both sphincters	46

Baseline characteristics

Of the 100 patients, 67 reported missing work or significant activities before ERCP

IU Experience: Results

50 Use of Narcotic Analgesics 45 40 35 Significant Dose 30 11 (22%) Reduction (>50%) 25 20 Completely Free From Narcotics 15 23 (46%) 10 16 (32%) 5 0 No Change Off/Decreased Narcotics

66/100 patients (66%) had \geq 50% improvement in pain, and 33% had complete resolution of pain

50/100 patients (50%) used narcotics for abdominal pain pre-ERCP

IU Experience

- Different from EPISOD?
- Not really
 - Retrospective
 - No control (sham) group
 - Similar to historical data

Indications for SOM: 2013

 Unexplained, *disabling* pancreaticobiliary pain ± LFT and/or pancreatic enzyme abnormalities

Idiopathic pancreatitis

Defining idiopathic recurrent acute pancreatitis (IRAP)

<u>H&P</u>

- Alcohol
- Medications
- Trauma
- Family history

Imaging

- Tumors (PDAC, IPMN)
- Pancreas divisum
- Stone, Stricture

Laboratory

- Calcium
- Triglycerides
- Liver tests

Miscellaneous testing

- Genetics
- Empiric cholecystectomy
- Microcrystals

ERCP for diagnosis and treatment

- The diagnostic yield of ERCP (ductography alone) ranges from 32-80%
- Elevated basal sphincter pressure has been reported in 30-65% of patients with idiopathic AP

- Is this cause or effect?
- The therapeutic role of sphincterotomy is debated

IRAP and SOD: Therapy

Results of SOM predict outcome from sphincter ablation

- \rightarrow limited data
- \rightarrow no long-term F/U
- \rightarrow small sample size
- \rightarrow no randomized controlled trials
- → no outcome data of empiric sphincterotomy without SOM
IRAP and SOD: Prospective Randomized Trial

Coté et al. Gastro 2012;143:1502-9

Randomization **ERCP** with pancreatic SOM Elevated (≥40mmHg) basal Normal basal biliary and pancreatic sphincter pressure pancreatic sphincter pressure **Biliary** Sham sphincterotomy 1:1 Biliary + **Biliary** Pancreatic

sphincterotomy

sphincterotomy

RCT

- N=89, median f/u 78 mos., all >12 months
- Endpoint: acute pancreatitis after sphincterotomy
- 77.5% positive manometry at the time of enrollment (n=89)

GASTROENTEROLOGY 2012;143:1502-1509

Randomized Trial

GASTROENTEROLOGY 2012;143:1502-1509

Post-Hoc Analysis

- Evaluate the impact of biliary and dual sphincterotomy on the episode density of iRAP with long term follow up (additional two years)
 - Subsequent frequency (#/yr) of attacks
 Indexto change in frequency (#/yr) of attacks
 - relative change in frequency (#/yr) of attacks

Results: Pancreatitis

Baseline Pancreatitis Rate (n=81)
 Prior Episodes: median 2 (range 2-6)
 Incidence rate 2.1 episodes/yr (range 0.09-12/yr)

Following Sphincterotomy (n= 74)
50% repeat episode of pancreatitis, median 1 episode
Incidence rate 0.22/yr (range 0-2/yr)
Incidence rate ratio 0.2 (rate was 20% of baseline)

Results: Sphincterotomy and iRAP

- Incidence rate of iRAP decreased following sphincterotomy
- No incremental benefit for pancreatic ES added to biliary ES in pancreatic SOD-iRAP
 - Equivalent rates of AP
 - Heavy repeat procedure burden in both groups

Conclusions: Pancreatic SOM and iRAP

- Role of SOM in guiding *therapy* is questionable:
 ->75% patients = positive SOM !
 The incidence rate declined in all groups
 No difference in "relative" rate after ES
- Prognostic value when SOM if positive?
 Higher baseline rate (AP/yr) of iRAP
 - Higher rate (AP/yr) of pancreatitis after therapy
 - Predicts an aggressive phenotype

Conclusion: ERCP and SOM

What's the final word in 2015?

Role for ERCP and SOM? 2013

SOD Type	ERCP	SOM
	Yes	Not necessary
I	Yes	Highly recommended
III	Yes	Mandatory

Role for ERCP and SOM? 2015

SOD Type	ERCP	SOM
l l	Yes	Not necessary
II	Yes	Highly recommended
	No	No

SOM in IARP

- SOD is commonly identified in patients with IARP when detailed endoscopic evaluation is done
- the best therapy awaits further study

 at present, the role of sphincter therapy remains unclear

INDIANA UNIVERSITY SCHOOL OF MEDICINE

IU ERCP

Thank-you!

YOU'RE EATING TOD MUCH FIBER!